skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bonial, Claire"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. Bonial, Claire; Bonn, Julia; Hwang, Jena D (Ed.)
    We evaluate the ability of large language models (LLMs) to provide PropBank semantic role label annotations across different realizations of the same verbs in transitive, intransitive, and middle voice constructions. In order to assess the meta-linguistic capabilities of LLMs as well as their ability to glean such capabilities through in-context learning, we evaluate the models in a zero-shot setting, in a setting where it is given three examples of another verb used in transitive, intransitive, and middle voice constructions, and finally in a setting where it is given the examples as well as the correct sense and roleset information. We find that zero-shot knowledge of PropBank annotation is almost nonexistent. The largest model evaluated, GPT-4, achieves the best performance in the setting where it is given both examples and the correct roleset in the prompt, demonstrating that larger models can ascertain some meta-linguistic capabilities through in-context learning. However, even in this setting, which is simpler than the task of a human in PropBank annotation, the model achieves only 48% accuracy in marking numbered arguments correctly. To ensure transparency and reproducibility, we publicly release our dataset and model responses. 
    more » « less
  3. Language models have shown great promise in common-sense related tasks. However, it remains unseen how they would perform in the context of physically situated human-robot interactions, particularly in disaster-relief scenarios. In this paper, we develop a language model evaluation dataset with more than 800 cloze sentences, written to probe for the function of over 200 objects. The sentences are divided into two tasks: an “easy” task where the language model has to choose between vocabulary with different functions (Task 1), and a “challenge” where it has to choose between vocabulary with the same function, yet only one vocabulary item is appropriate given real world constraints on functionality (Task 2). DistilBERT performs with about 80% accuracy for both tasks. To investigate how annotator variability affected those results, we developed a follow-on experiment where we compared our original results with wrong answers chosen based on embedding vector distances. Those results showed increased precision across documents but a 15% decrease in accuracy. We conclude that language models do have a strong knowledge basis for object reasoning, but will require creative fine-tuning strategies in order to be successfully deployed. 
    more » « less